
guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

1 / 17

Guide étudiant : Mise en place de l'environnement
informatique pour la formation en Intelligence
Artificielle - Datalab

Sommaire

DataLab Partie 3 : GIT pour le travail collaboratif et RUDI pour les données

1. Débuter avec Git dans JupyterLab
GIT : Configuration de l'utilisateur
Clonage du TP depuis Gitlab vers JupyterLab
Sauvegarde de modifications du TP depuis JupyterLab vers Gitlab

2. RUDI pour les datasets de données (OpenData)
Présentation de RUDI
Récupération de données RUDI depuis le notebook

3. Bases de GIT en ligne de commande
Premier clonage du TP : git clone
Modification d'un fichier : git status
Sauvegarde dans le repo local : git add, git commit
Envoi de la modification sur le serveur: git push
Récupération d'une modification depuis le serveur: git pull
Gestion d'un conflit

4. Travail collaboratif via GIT
Création d'une branche de developpement : git checkout -b
Modification de fichier sur une branche
Changement de branche courante : git checkout, git stash
Merge d'une branche vers une autre : git merge

1. Débuter avec Git dans JupyterLab

GIT : Configuration de l'utilisateur

Commencer par ouvrir un terminal sous JupyterLab

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

2 / 17

JupyterLab ouvert

Puis il faut utiliser la commande "bash" pour avoir un terminal plus pratique

bash

NOTE: les copié collé vers ce terminal doivent se faire uniquement avec les raccourcis clavier ctrl-c /
ctrl-v

L'outil git permet de tracer les auteurs des changements.
Par défaut, lorsqu'un commit est effectué, le nom et l'adresse sont paramétrés par défaut : copié depuis les
paramètres de la machine et peuvent très souvent se révéler inexacts.
Il est préférable de renseigner ces éléments en amont en utilisant la commande git config:

git config --global user.name "Your Name"
git config --global user.email "your.name@etudiant.univ-rennes.fr"

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

3 / 17

NOTE: Le paramètre "--global" permet de modifier des paramètre pour votre compte utilisateur
quelque soit le dépôt GIT local utilisé.

De plus, afin d'éviter d'avoir à entrer le token GIT (Personal Access Token) systématiquement, une autre
commande GIT s'avère utile :

Sous Linux et MAC, on peut utiliser le "credential cache" qui stocke en mémoire vive de façon éphémère les
tokens avec les deux commandes suivantes :

git config --global credential.credentialStore cache
git config --global credential.helper cache

On peut également définir la durée maximum de stockage éphémère (par défaut 900 secondes soit 15
minutes):

git config --global credential.cacheOptions "--timeout 5400"
git config --global credential.helper 'cache --timeout=5400'

Clonage du TP depuis Gitlab vers JupyterLab

Il est temps de cloner le dépôt GIT.

NOTE: JupyterLab a déjà l'extension "jupyterlab-git" installée, cette extension permet de gérer les
dépôts Git directement dans l'environnement.

Pour cloner le projet depuis Gitlab il faut tout d'abord cliquer sur l'icone Git dans la partie gauche de
l'interface web de JupyterLab.

Icone Git dans JupyterLab

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

4 / 17

On accède alors au menu Git qui nous propose plusieurs possibilités.

Il faut choisir "Clone a Repository".

Menu Git dans JupyterLab

Un pop-up s'ouvre pour demander le lien https vers le dépôt Git. Il faut coller ici le lien récupéré via Gitlab,
dans notre exemple "https://gitlab-ia.univ-rennes.fr/frederic.babon/TP_test.git"

NOTE: Pour rappel ce lien peut être récupéré sur la page du projet dans GitLab. Voir détails en partie 1.

Puis cliquez sur le bouton bleu "Clone"

*Clonage via "jupyterlab-git" *

L'extension Git va alors demander le token et mot de passe nécessaires pour s'authentifier avec de réaliser
l'opération de clonage. Il faut donc renseigner le nom du token Gitlab (dans notre exemple "my_token_name")
et comme password le token lui-même.

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

5 / 17

pour ne pas avoir à recopier à chaque opération Git le token, pensez à activer "Save my login
temporarily"

Token et mot de passe requis pour le clonage

Vous devriez alors voir apparaître en bas à droite un message qui confirme que le clonage s'est bien déroulé.

Clonage réussi : message

De même vous devriez voir, dans l'explorateur de fichier de JupyterLab, les fichiers récupérés par clonage.

Clonage réussi : dossier

Double cliquez sur le dossier "tp_test" pour visualiser les fichiers.

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

6 / 17

Clonage réussi : fichiers

Et vous pouvez alors ouvrir le notebook "modele_template_TP.ipynb".

Ouverture du notebook

Sauvegarde de modifications du TP depuis JupyterLab vers Gitlab

Lorsque vous aurez effectué des modifications sur un ou plusieurs fichiers, pensez à sauvegarder votre travail
sur Git. Pour cela il faut ouvrir de nouveau le menu Git, et vous verrez alors la liste des fichiers modifiés
"Changed".

Deux possibilités ici pour préparer le commit Git :

ajouter un par un les fichiers modifiés
ajouter tous les fichiers modifiés d'un coup

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

7 / 17

Ajout d'un fichier modifié "stage this change" pour le commit

Ajout de tous les fichiers modifiés "stage all changes" pour le commit

Une fois les fichiers ajoutés, il faut définir le résumé "summary" et la description du commit Git.

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

8 / 17

Résumé "summary" et description du commit Git

Cliquez ensuite sur le bouton bleu "COMMIT" en bas à gaucher pour sauvegarder (localement) le commit.

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

9 / 17

Bouton bleu "COMMIT"

NOTE: pour rappel, lors d'un premier commit il peut être nécessaire de configurer nom du
développeur et email. L'extension git peut afficher une invite graphique pour cette configuration. Dans
ce cas, vous devrez saisir un nom d'utilisateur (Prenom Nom) et un email (prenom.nom@etudiant.univ-
rennes.fr). Autrement, comme vu précédemment, il est possible d'ajouter manuellement une cellule au
notebook courant et d'y mettre les commandes suivantes: '!git config user.name "Prenom Nom"' et
'!git config user.email "prenom.nom@etudiant.univ-rennes.fr"'

Un message s'affiche alors pour confirmer la prise en compte du commit (local).

Message de confirmation du commit (local)

Pour pouvoir envoyer ce commit local vers le serveur Gitlab "gitlab-ia.univ-rennes.fr" il est nécessaire de
cliquer sur l'icone de "push" en haut du menu Git.

On peut voir qu'un commit est en attente d'envoi grâce à la petite pastille orange au dessus de l'icone
de "push"

Envoi "push" du commit vers serveur Gitlab

Une fois le "push" réalisé, un message de confirmation s'affiche en bas à droite.

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

10 / 17

Message de confirmation de l'envoi du commit vers Gitlab "push"

Les modifications sont alors bien sauvegardées sur le serveur.

2. RUDI pour les datasets de données (OpenData)

Présentation de RUDI pour les datasets de données

En 2010, Rennes devient la première collectivité Française à ouvrir l'accès à ses données.

RUDI, "Rennes Urban Data Interface", est un projet open source et souverain démarré en 2019 qui s'inscrit
dans la démarche d'ouverture des données publiques.

Pour publier séparément données et métadonnées, chaque acteur public gère son propre "Noeud producteur
RUDI".

Dans le cadre du projet TIARE, dont DataLab fait partie, un serveur rudi dédié a été créé pour gérer les
données associées.

C'est sur ce serveur que les enseignants déposeront les données nécessaires pour les TP.

RUDI : fédération de noeuds en étoile

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

11 / 17

Récupération de données RUDI depuis le notebook

Pour rappel un notebook est composée de plusieurs cellules qui peuvent être du texte ou du code exécutable.

Dans le template modèle de TP, vous pourrez trouver une cellule dédiée au téléchargement de données Open
Data depuis RUDI.

Cellule dédiée à la récupération de données depuis "RUDI"

Pour télécharger une ressource RUDI il faut disposer du titre de la ressource.

L'enseignant pourra au choix soit :

vous fournir ce titre de ressource
ou sinon il aura déjà préparé le modèle de TP avec le titre pré-rempli.

Pour choisir la ressource RUDI dont les données doivent être téléchargées, il faut modifier la ligne suivante
dans le notebook du projet "https://gitlab-ia.univ-rennes.fr/frederic.babon/TP_test.git" :

title="My RUDI title to search for downloading data"

En remplaçant l'exemple de titre par le titre de la ressource RUDI recherchée.

Dans notre exemple la ligne de la cellule dans JupyterLab est déjà préparée :

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

12 / 17

title="JDD Enseignements IA TIARe"

Validez que l'exécution de cette cellule permet de télécharger les données du TP depuis Rudi.

NOTE: Dans le cas d'un notebook R, pour utiliser les données du TP le working directory n'est parfois
pas le bon dans ce cas on peut ajouter une cellule avec le contenu: setwd("/home/monTP")

3. Bases de GIT en ligne de commande

Dans cette partie nous allons découvrir comment utiliser les commandes GIT dans un terminal. Nous
utiliserons aussi bien les termes "dépôt", "repository" ou "repo" pour désigner les versions locales ou distantes
de notre projet.

Premier clonage du TP : git clone

Git clone permet de copier le contenu d'un repository distant.

git clone https://gitlab-ia.univ-rennes.fr/<your-name>/<repo-name>.git

L'adresse exacte peut être trouvée dans l'interface GitLab :

Adresse du repository dans GitLab

Un dossier nommé comme le repo est alors créé. Placez-vous dans ce dossier.

Modification d'un fichier : git status

La commande git status permet de connaître l'état de sauvegarde des fichiers du repo, qu'ils aient été
modifiés, créés, supprimés ou même commités.

Sauvegarde dans le repo local : git add, git commit

Modifiez l'état du repo en effectuant une opération comme:

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

13 / 17

créer un nouveau fichier
ajouter votre nom dans le "README.md"
...

La commande git status doit révéler le changement effectué.

La commande git add permet d'ajouter le fichier dans l'ensemble de ceux à commiter.

git add <nouveau-fichier>
git add README.md

La commande git commit permet de commiter les changements.
Un message sera demandé afin de décrire les changements. Il peut aussi être inclut comme paramètre de la
commande :

git commit -m "add name to readme.md"

Envoi de la modification sur le serveur: git push

La command git push permet d'envoyer les changements sauvegardés dans les commits vers le dépôt
distant "gitlab-ia".

git push

Récupération d'une modification depuis le serveur: git pull

Pour simuler une modification distante, modifiez un fichier directement via l'IDE Gitlab.

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

14 / 17

Bouton "Edit" dans GitLab pour accéder à l'IDE dans le navigateur

Ensuite, effectuez le commit de ces changements :
dans l'onglet "Source Control", cliquez sur "Commit and push".

Sur la console, utilisez alors la commande git pull

git pull

Les fichiers locaux seront automatiquement mis à jour pour refléter les changements effectués sur l'IDE Gitlab.

Gestion d'un conflit

Sur l'IDE Gitlab, faites une nouvelle modification, commitez et pushez.

Sur le repo local (la console), faites aussi une modification dans le même fichier, puis utiliser les commandes
git add et git commit

git add .
git commit -m "another change"

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

15 / 17

NOTE: "git add ." permet d'ajouter tous les fichiers du dossier courant NOTE: "git add -u" permet
d'ajouter uniquement les modifications sur les fichiers préalablement commités

Encore sur la console, utilisez la commande git pull

git pull

La commande doit échouer, comme des changements ont été faits à la fois à distance et en local.
Dans le message d'erreur, il est indiqué qu'il faut choisir comment gérer ce problème.
Nous allons choisir comme option la stratégie de merge (commande "git config pull.rebase false") puis pull à
nouveau.

 git config pull.rebase false
 git pull

Dans la plupart des cas, les changements vont être fusionnés et il ne vous restera qu'à commiter les fichiers
concernés.
Il se peut cependant que des conflits ne soient pas gérés automatiquement, généralement car des
modifications ont été effectuées sur les mêmes lignes.

La commande git status indiquera de tels conflits sous le label "both modified".

Les conflits prennent cette forme :

<<<<<<< HEAD
{code local}
=======
{code distant}
>>>>>>> c1ec41ab3885c356edfa52e640a2d62a331cd7fc

Il vous faut alors éditer le fichier localement, puis commiter et pusher les changements.

4. Travail collaboratif via GIT

Création d'une branche de développement : git checkout -b

Si un des développeurs souhaite développer une nouvelle fonctionnalité sans perturber les autres pendant le
développement, il peut utiliser le concept GIT de "branche" qui permet d'avoir un historique séparé le temps
du développement de cette fonctionnalité.

NOTE: Pour information la branche principale est nommée "master".

La commande git checkout -b permet de créer une nouvelle branche :

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

16 / 17

git checkout -b <nouvelle-branche>

Lister les branches : git branch

La commande git branch permet de connaître la liste des branches disponibles et de connaître celle qui est
active. La commande git status indique aussi la branche active.

git branch

Modification de fichier sur une branche

Maintenant que vous êtes sur une nouvelle branche, vous pouvez modifier et commiter des fichiers sans
modifier les autres branches et ainsi conserver, par exemple, une version stable. Les commandes restent les
mêmes.

git add <fichier-modifié>
git commit -m "commit sur une autre branche"
git push

Si la branche n'existe pas sur le repo distant, il vous faudra préciser qu'il faut la créer au moment du push :

git push --set-upstream origin <nouvelle-branche>

Changement de branche courante : git checkout, git stash

Pour changer la branche courante, il faut utiliser la commande git checkout en précisant le nom de la
branche cible :

git checkout main

Si des changements ont été effectués sans commit, vous pouvez sauvegarder les changements
temporairement en utilisant git stash pour les retrouver grâce à git stash pop.

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

17 / 17

git stash
git checkout main
git checkout <nouvelle-branche>
git stash pop

Merge d'une branche vers une autre : git merge

La commande git merge permet de fusionner des branches, en rejouant les changements de la branche cible
sur la branche active.

git checkout main
git merge <nouvelle-branche>

En cas de conflit, la méthode vue dans Gestion d'un conflit doit être utilisée.

Félicitations, la partie 3 du guide DataLab est terminée !

