guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

Guide étudiant : Mise en place de |I'environnement
informatique pour la formation en Intelligence
Artificielle - Datalab

Sommaire

Datalab Partie 3 : GIT pour le travail collaboratif et RUDI pour les données

o

(e}

o

o

(e}

o

o

o

o

o

o

o

o

o

o

1. Débuter avec Git dans JupyterLab

GIT : Configuration de l'utilisateur
Clonage du TP depuis Gitlab vers JupyterLab
Sauvegarde de modifications du TP depuis JupyterLab vers Gitlab

2. RUDI pour les datasets de données (OpenData)

Présentation de RUDI
Récupération de données RUDI depuis le notebook

3. Bases de GIT en ligne de commande

Premier clonage du TP : git clone

Modification d'un fichier : git status

Sauvegarde dans le repo local : git add, git commit

Envoi de la modification sur le serveur: git push
Récupération d'une modification depuis le serveur: git pull
Gestion d'un conflit

4. Travail collaboratif via GIT

Création d'une branche de developpement : git checkout -b
Modification de fichier sur une branche

Changement de branche courante : git checkout, git stash
Merge d'une branche vers une autre : git merge

1. Débuter avec Git dans JupyterLab

GIT : Configuration de I'utilisateur

Commencer par ouvrir un terminal sous JupyterLab

1/17

guide_datalab_etudiant_datalab_web_partie3_git.md

Notebook

A

Python 3
(ipykernel)

Console

A

Python 3
(ipykernel)

Other

S_

Terminal
A

R

2025-09-05

M & G

b 4

Markdown File Python File R File

JupyterLab ouvert

Puis il faut utiliser la commande "bash" pour avoir un terminal plus pratique

bash

NOTE: les copié collé vers ce terminal doivent se faire uniquement avec les raccourcis clavier ctrl-c /

ctrl-v

L'outil git permet de tracer les auteurs des changements.

Par défaut, lorsqu'un commit est effectué, le nom et I'adresse sont paramétrés par défaut : copié depuis les

parametres de la machine et peuvent trés souvent se révéler inexacts.

Il est préférable de renseigner ces éléments en amont en utilisant la commande

git config --global user.name "Your Name"
git config --global user.email "your.name@etudiant.univ-rennes.fr"

2117

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

NOTE: Le paramétre "--global" permet de modifier des parametre pour votre compte utilisateur
guelque soit le dépot GIT local utilisé.

De plus, afin d'éviter d'avoir a entrer le token GIT (Personal Access Token) systématiquement, une autre

commande GIT s'avere utile :

Sous Linux et MAC, on peut utiliser le "credential cache" qui stocke en mémoire vive de facon éphémere les
tokens avec les deux commandes suivantes :

git config --global credential.credentialStore cache
git config --global credential.helper cache

On peut également définir la durée maximum de stockage éphémere (par défaut 900 secondes soit 15

minutes):

git config --global credential.cacheOptions "--timeout 5400"
git config --global credential.helper ‘'cache --timeout=5400"

Clonage du TP depuis Gitlab vers JupyterLab

Il est temps de cloner le dépdt GIT.

NOTE: JupyterLab a déja I'extension "jupyterlab-git" installée, cette extension permet de gérer les
dépots Git directement dans I'environnement.

Pour cloner le projet depuis Gitlab il faut tout d'abord cliquer sur I'icone Git dans la partie gauche de
l'interface web de JupyterLab.

$¢ O =&

(6]

»

Icone Git dans JupyterLab

3/17

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

On accede alors au menu Git qui nous propose plusieurs possibilités.

Il faut choisir "Clone a Repository".

: File Edit View FRun Kernel Gi

BB You are not currently in a Git
repository. To use Git, navigate to a
local repository, initialize a repository

o here, or clone an existing repository.

0 Open the FileBrowser

Initialize a Repository

= Clone a Repository

Menu Git dans JupyterLab

Un pop-up s'ouvre pour demander le lien https vers le dépot Git. Il faut coller ici le lien récupéré via Gitlab,
dans notre exemple "https://gitlab-ia.univ-rennes.fr/frederic.babon/TP_test.git"

I NOTE: Pour rappel ce lien peut étre récupéré sur la page du projet dans GitLab. Voir détails en partie 1.

Puis cliquez sur le bouton bleu "Clone"

Clone a repo

Enter the URI of the remote Git repository {frederic.babon/TP_test.git

Include submodules

|| Download the repository

Cancel Clone

4

*Clonage via "jupyterlab-git" *
L'extension Git va alors demander le token et mot de passe nécessaires pour s'authentifier avec de réaliser

I'opération de clonage. Il faut donc renseigner le nom du token Gitlab (dans notre exemple "my_token_name")
et comme password le token lui-méme.

4/17

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

pour ne pas avoir a recopier a chaque opération Git le token, pensez a activer "Save my login
temporarily"

Git credentials required

Enter credentials for remote repository
my_token_name
SOSONONEN NN NNONRROBERS
Save my login tempaorarily

Y

Token et mot de passe requis pour le clonage

Vous devriez alors voir apparaitre en bas a droite un message qui confirme que le clonage s'est bien déroulé.

Q Successfully cloned

>
-
Launcher 3 .[:l

Clonage réussi : message

De méme vous devriez voir, dans I'explorateur de fichier de JupyterLab, les fichiers récupérés par clonage.

m BN = *+ c

o °

| Q
® m

Mame - Last Modified
= m tp_test 20 seconds ago

Clonage réussi : dossier

Double cliquez sur le dossier "tp_test" pour visualiser les fichiers.

5/17

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

: File Edit View Run Kernel Git T

s B = + c |
o

| Q
‘} / tp_test/

Mame - Last Modified
= H modele_te... 50 seconds ago

M README.md 50 seconds ago

Clonage réussi : fichiers

Et vous pouvez alors ouvrir le notebook "modele_template_TP.ipynb".

_: File Edit Wiew Run Kernel Git Tabs Settings Help

I B t C & Launcher % | [% modele template TPipynb ® | +
B+ XD O » = ¢ » Markdown v git

a| fnt
| - Template pour la création de TP
0 W/ tp_test/
— Name - Last Madified Ce template est utile 4 la mise en place de I'environnement informatique pour la formation en intelligence artificelle,
il - M modele te.. 1 minute ago
M READMEmd 1 minute ago Le guide enseignant associé est disponible ici : hitps://gitlab-ia-test.univ-rennes.fr/tiare/guide_enseignant

Le guide étudiant associé est disponible ici : https://gitlab-ia-test.univ-rennes.fr/tiare/guide_etudiant

Mise en place de La synchronisation avec L'espace de stockage de trovail

from ponele.calabh imnort drive

Ouverture du notebook

Sauvegarde de modifications du TP depuis JupyterLab vers Gitlab

Lorsque vous aurez effectué des modifications sur un ou plusieurs fichiers, pensez a sauvegarder votre travail
sur Git. Pour cela il faut ouvrir de nouveau le menu Git, et vous verrez alors la liste des fichiers modifiés
"Changed".

Deux possibilités ici pour préparer le commit Git :

® ajouter un par un les fichiers modifiés
* Qajouter tous les fichiers modifiés d'un coup

6/17

guide_datalab_etudiant_datalab_web_partie3_git.md

: File Edit WView Run Kernel Git Tabs Setting
&y & C 0 [F Launcher
.

- Current Repository B + X
tp_test

o

Current Branch

‘) 4 main) M
Changes History
= » Staged (1)
- Changed 9 % 4+m

» [modele_template_TP...

Untracked |:E[Stagn?_this change

M| modele_template_TP-checkpointip... |

1=

README-checkpoint.md .ipynb_che.. L

Ajout d'un fichier modifié "stage this change" pour le commit

: File Edit WView Run Kernel Git Tabs Settin

o C i
» [Launcher

Current Repository B + X
tp_test

-

o

B Current Branch
main

<

Changes History
= » Staged (0)
~ Changed D9 +m

™ modele_template_TP.ipynb
~ Untracked

Stage all changes

(2)
M| modele_template_TP-checkpoint.ip... !

M README-checkpoint.md .ipynb_che.. L

Ajout de tous les fichiers modifiés "stage all changes" pour le commit

Une fois les fichiers ajoutés, il faut définir le résumé "summary" et la description du commit Git.

7117

2025-09-05

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

: File Edit WView FRun Kernel Git

ay & C
|
Current Reposito
= ; P ry
o p_test
Current Branch
0 4 main)
Changes History
*= - Staged (1)
M modele_template_TP.ipynb M
*' » Changed {0}
« Untracked (2]

M| modele_template_TP-checkpointip... |

1=

README-checkpoint.md .ipynb_che.. L

v Stash (0
Docs: mise a jour de la 1ere cellule

premiére phrase mise a jour

COMMIT :

Résumé "summary" et description du commit Git
Cliquez ensuite sur le bouton bleu "COMMIT" en bas a gaucher pour sauvegarder (localement) le commit.

8117

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

o ~ ICDmmitL '

Bouton bleu "COMMIT"

NOTE: pour rappel, lors d'un premier commit il peut étre nécessaire de configurer nom du
développeur et email. L'extension git peut afficher une invite graphique pour cette configuration. Dans
ce cas, vous devrez saisir un nom d'utilisateur (Prenom Nom) et un email (prenom.nom@etudiant.univ-
rennes.fr). Autrement, comme vu précédemment, il est possible d'ajouter manuellement une cellule au
notebook courant et d'y mettre les commandes suivantes: 'Igit config user.name "Prenom Nom™"' et

'Igit config user.email "prenom.nom@etudiant.univ-rennes.fr

Un message s'affiche alors pour confirmer la prise en compte du commit (local).

0 Committed changes. x

Message de confirmation du commit (local)

Pour pouvoir envoyer ce commit local vers le serveur Gitlab "gitlab-ia.univ-rennes.fr" il est nécessaire de
cliquer sur l'icone de "push” en haut du menu Git.

On peut voir qu'un commit est en attente d'envoi grace a la petite pastille orange au dessus de l'icone
de "push”

— File Edit View Run Kernel Git Tabs Settings Help

- @ & C [Launcher *
: i ¥ M [= ol - -
- Current Repository |F'u5h committed changes (ahead by 1 cu:ummits]f
o tp_test
Current Branch
o P main ' ~ Template
Changes History
— Ce template permet
= + Staged (0)
» Changed (0) Le guide enseignant
» - Untracked (2)

Le guide étudiant as:

modele_template_TP-checkpointip... |

1=

README-checkpoint.md .ipynb_che.. L # Mise en place de

[PSSR —— - -1

Envoi "push" du commit vers serveur Gitlab

Une fois le "push” réalisé, un message de confirmation s'affiche en bas a droite.

9/17

guide_datalab_etudiant_datalab_web_partie3_git.md

9 Successfully pushed

Message de confirmation de l'envoi du commit vers Gitlab "push

Les modifications sont alors bien sauvegardées sur le serveur.

2. RUDI pour les datasets de données (OpenData)

2025-09-05

Présentation de RUDI pour les datasets de données

En 2010, Rennes devient la premiere collectivité Francaise a ouvrir I'acces a ses données.

RUDI, "Rennes Urban Data Interface", est un projet open source et souverain démarré en 2019 qui s'inscrit

dans la démarche d'ouverture des données publiques.

Pour publier séparément données et métadonnées, chaque acteur public gere son propre "Noeud producteur

RUDI".

Dans le cadre du projet TIARE, dont Datalab fait partie, un serveur rudi dédié a été créé pour gérer les

données associées.

C'est sur ce serveur que les enseignants déposeront les données nécessaires pour les TP.

T

Nosud
producteur
RUDI

~—
)

Moeud
producteur
RUDI

~—

)

Neosud
producteur
RUDI

~—

L\

[R

AUDIAR
Neoeud Nceud Neoeud
producteur producteur producteur
RUDI RUDI RUDI
Portail

a9

MNcoeud Neoeud

producteur
RUDI

producteur
RUDI

Neeud

producteur
RUDI

T

Meoeud
producteur
RUDI
N/
"SR
Meoeud
producteur
RUDI
N/
"SR
Meoeud

producteur
RUDI

N~

RUDI : fédération de noeuds en étoile

10/17

guide_datalab_etudiant_datalab_web_partie3_git.md

2025-09-05

Récupération de données RUDI depuis le notebook

Pour rappel un notebook est composée de plusieurs cellules qui peuvent étre du texte ou du code exécutable.

Dans le template modele de TP, vous pourrez trouver une cellule dédiée au téléchargement de données Open

Data depuis RUDI.

maodele_template_TPipynb X | +

B+ XDOO0O» 8 C » Makdownv @ sit

wanger la ligne ci-dessous par L

]
o
a m =
L =
rt
o

title to search for downloading
from rudi_mode_read.rudi_node_reader import RudiNodeReader
node_reader = RudiMNodeReader('https://tiare.rudi.univ-rennes.fr')

/

metadata_retrieved = node_reader.find_metadata_with_title(title)

if metadata_retrieved != None:
‘data™
"+data_dir)

L5 ’

data_dir =

print("data_d
Imkdir -p $data_dir

for media_file in metadata_retrieved[’

if media_file["media_type"] == "FILE"

media_id = media_file["media_id

filepath = data_dir+"/"+media_file["me

if not os.path.isfile(filepath):
try:
print(“Downloaded:",node_reader
except Exception as e:
print("Impossible to download:",
else:
print(”file already exist : ",file
else:
print("Metadata not found:",title)

vailable_formats®]:

download_file_with_uuid(media_id, data_dir))

AN

traceback.format_exc(})

path)

Cellule dédiée a la récupération de données depuis "RUDI"

Pour télécharger une ressource RUDI il faut disposer du titre de la ressource.

L'enseignant pourra au choix soit :

® vous fournir ce titre de ressource

* ousinon il aura déja préparé le modeéle de TP avec le titre pré-rempli.

Pour choisir la ressource RUDI dont les données doivent étre téléchargées, il faut modifier la ligne suivante

dans le notebook du projet "https://gitlab-ia.univ-rennes.fr/frederic.oabon/TP_test.git" :

title="My RUDI title to search for downloading data"

En remplagant I'exemple de titre par le titre de la ressource RUDI recherchée.

Dans notre exemple la ligne de la cellule dan

s JupyterlLab est déja préparée :

1/17

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

title="JIDD Enseignements IA TIARe"

Validez que I'exécution de cette cellule permet de télécharger les données du TP depuis Rudi.

NOTE: Dans le cas d'un notebook R, pour utiliser les données du TP le working directory n'est parfois
pas le bon dans ce cas on peut ajouter une cellule avec le contenu: setwd("/home/monTP")

3. Bases de GIT en ligne de commande

Dans cette partie nous allons découvrir comment utiliser les commandes GIT dans un terminal. Nous

utiliserons aussi bien les termes "dépot", "repository” ou "repo” pour désigner les versions locales ou distantes
de notre projet.

Premier clonage du TP : git clone

Git clone permet de copier le contenu d'un repository distant.
git clone https://gitlab-ia.univ-rennes.fr/<your-name>/<repo-name>.git

L'adresse exacte peut étre trouvée dans l'interface GitLab :

History Find file Edit ~

Clone with HTTPS

https://gitlab-ia.univ-rennes.fr | [

e

Open in your IDE Copy URL

Adresse du repository dans GitLab

Un dossier nommé comme le repo est alors créé. Placez-vous dans ce dossier.

Modification d'un fichier : git status

La commande permet de connaitre I'état de sauvegarde des fichiers du repo, qu'ils aient été
modifiés, créés, supprimés ou méme commités.

Sauvegarde dans le repo local : git add, git commit

Modifiez I'état du repo en effectuant une opération comme:

12/17

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

® créer un nouveau fichier
® ajouter votre nom dans le "README.md"

La commande doit révéler le changement effectué.

La commande permet d'ajouter le fichier dans I'ensemble de ceux a commiter.

git add <nouveau-fichier>
git add README.md

La commande permet de commiter les changements.
Un message sera demandé afin de décrire les changements. Il peut aussi étre inclut comme parametre de la

commande :

git commit -m "add name to readme.md"

Envoi de la modification sur le serveur: git push

La command permet d'envoyer les changements sauvegardés dans les commits vers le dépot
distant "gitlab-ia".

git push

Récupération d'une modification depuis le serveur: git pull

Pour simuler une modification distante, modifiez un fichier directement via I'IDE Gitlab.

13717

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05
‘ + v ‘ Find file Code v

https://gitlab-ia.univ-rennes.fr/frederic.o [!

Clone with HTTPS

Open with

Web IDE .
Visual Studio Code HTTPS
Intellid IDEA HTTPS | |

Download source code

zZip tar.gz tar.bz2 tar

B

Bouton "Edit" dans GitLab pour accéder a l'IDE dans le navigateur

Ensuite, effectuez le commit de ces changements :
dans I'onglet "Source Control", cliquez sur "Commit and push”.
Sur la console, utilisez alors la commande

git pull

Les fichiers locaux seront automatiquement mis a jour pour refléter les changements effectués sur I'IDE Gitlab.

Gestion d'un conflit

Sur I'IDE Gitlab, faites une nouvelle modification, commitez et pushez.

Sur le repo local (la console), faites aussi une modification dans le méme fichier, puis utiliser les commandes
et

git add .
git commit -m "another change"

14 /17

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

NOTE: "git add ." permet d'ajouter tous les fichiers du dossier courant NOTE: "git add -u" permet
d'ajouter uniquement les modifications sur les fichiers préalablement commités

Encore sur la console, utilisez la commande

git pull

La commande doit échouer, comme des changements ont été faits a la fois a distance et en local.

Dans le message d'erreur, il est indiqué qu'il faut choisir comment gérer ce probléme.

Nous allons choisir comme option la stratégie de merge (commande "git config pull.rebase false") puis pull a
nouveau.

git config pull.rebase false
git pull

Dans la plupart des cas, les changements vont étre fusionnés et il ne vous restera qu'a commiter les fichiers
concernes.

Il se peut cependant que des conflits ne soient pas gérés automatiquement, généralement car des
modifications ont été effectuées sur les mémes lignes.

La commande indiquera de tels conflits sous le label "both modified".
Les conflits prennent cette forme :

<<<<<<< HEAD
{code local}

{code distant}
>>>>>>> clec41ab3885c356edfa52e640a2d62a331cd7fc

Il vous faut alors éditer le fichier localement, puis commiter et pusher les changements.

4. Travail collaboratif via GIT

Création d'une branche de développement : git checkout -b

Si un des développeurs souhaite développer une nouvelle fonctionnalité sans perturber les autres pendant le
développement, il peut utiliser le concept GIT de "branche" qui permet d'avoir un historique séparé le temps
du développement de cette fonctionnalité.

NOTE: Pour information la branche principale est nommée "master".

La commande permet de créer une nouvelle branche :

15717

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

git checkout -b <nouvelle-branche>

Lister les branches : git branch

La commande permet de connaitre la liste des branches disponibles et de connaitre celle qui est
active. La commande indique aussi la branche active.
git branch

Modification de fichier sur une branche

Maintenant que vous étes sur une nouvelle branche, vous pouvez modifier et commiter des fichiers sans
modifier les autres branches et ainsi conserver, par exemple, une version stable. Les commandes restent les
mémes.

git add <fichier-modifié>
git commit -m "commit sur une autre branche"
git push

Si la branche n'existe pas sur le repo distant, il vous faudra préciser qu'il faut la créer au moment du push :

git push --set-upstream origin <nouvelle-branche>

Changement de branche courante : git checkout, git stash

Pour changer la branche courante, il faut utiliser la commande en précisant le nom de la
branche cible :

git checkout main

Si des changements ont été effectués sans commit, vous pouvez sauvegarder les changements

temporairement en utilisant pour les retrouver grace a

16 /17

guide_datalab_etudiant_datalab_web_partie3_git.md 2025-09-05

git stash

git checkout main

git checkout <nouvelle-branche>
git stash pop

Merge d'une branche vers une autre : git merge

La commande permet de fusionner des branches, en rejouant les changements de la branche cible
sur la branche active.

git checkout main
git merge <nouvelle-branche>

En cas de conflit, la méthode vue dans Gestion d'un conflit doit étre utilisée.

Félicitations, la partie 3 du guide DatalLab est terminée !

17117

